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Path dependence
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Chib's specification

● Multiple breaks
● Recurrent or no recurrent states (Change-point/Markov-

switching)
● MCMC with good mixing properties
● Allow to select an optimal number of regimes
● Forecast of structural breaks

AdvantagesAdvantages

DrawbacksDrawbacks
State of the art !State of the art !

● Geometric distribution for the regime duration
● Many computation for selecting the number of regimes
● Not applicable to models with path dependenceNot applicable to models with path dependence
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Chib's specification

● Simplification in the Forward-backward algorithm : 
Why not applicable ?Why not applicable ?

● If assumption does not hold :   

Chib's algorithm not available forChib's algorithm not available for

Example : ARMA, GARCHExample : ARMA, GARCH

State-space model with structural breaks in parametersState-space model with structural breaks in parameters
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Path dependent models
CP- and MS-ARMA modelsCP- and MS-ARMA models

CP- and MS-GARCH modelsCP- and MS-GARCH models

Change-pointChange-point Markov-switchingMarkov-switching
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Path dependence problem

T = 2   T = 4   T = 6   

ARMAARMA
GARCHGARCH

Likelihood at time t depends on the whole path Likelihood at time t depends on the whole path 
that has been followed so farthat has been followed so far
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Path dependence problem
Solutions ? Solutions ? 

1) Use of approximate models without path dependence
● Gray (1996), Dueker (1997), Klaassen (2002)
● Haas, Mittnik, Poella (2004)  
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Path dependence problem
Solutions ? Solutions ? 

2) Stephens (1994) : Inference on multiple breaks

DrawbacksDrawbacks
● Time-consuming if T large
● Many MCMC iterations are required 

May not converge in a finite amount of time !May not converge in a finite amount of time !

3) Bauwens, Preminger, Rombouts (2011) : 
● Single-move MCMC
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Single-move MCMC
CP- and MS-GARCH modelsCP- and MS-GARCH models

Change-pointChange-point Markov-switchingMarkov-switching
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Single-move MCMC
Metropolis-Hastings sampler :Metropolis-Hastings sampler :

One state updated at a time !

LikelihoodLikelihood Transition matrixTransition matrix
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Example

Simulated series : Simulated series : Initial state :Initial state :

Convergence after 100.000 MCMC iterations !Convergence after 100.000 MCMC iterations !  
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Single-move

● Generic method :
● Works for many CP and MS models 

AdvantagesAdvantages

DrawbacksDrawbacks

● No criterion for selecting the number of regimes
● Very Time-consuming if T large (especially for MS)
● Many MCMC iterations are required :

Very difficult to assess convergenceVery difficult to assess convergence

May not converge in a finite amount of time !May not converge in a finite amount of time !
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Questions ?
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Change-point models
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D-DREAM algorithm
CP-GARCH models :CP-GARCH models :

Come back to the Stephens' specification !Come back to the Stephens' specification !
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D-DREAM algorithm
Problem with Stephens' inference :

● Break dates sample one at a time (single-move) 
MCMC mixing issue

● Very demanding if T is large 

Discrete-DREAM MCMC : Discrete-DREAM MCMC : 

● Metropolis algorithm
● Jointly sample the break dates
● Very fast (faster than Forward-Backward)
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D-DREAM algorithm
● Two sets of parameters to be estimated :

ContinuousContinuous  Discrete Discrete   

● MCMC scheme :

IterationsIterations

Not a standard dist.Not a standard dist. Not a standard dist.Not a standard dist.

MetropolisMetropolis

Proposal : DREAM Proposal : DREAM   

MetropolisMetropolis

Proposal : D-DREAM Proposal : D-DREAM   
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D-DREAM algorithm
DDiffeRRential AAdaptative EEvolution MMetropolis  

(Vrugt et al. 2009)

● DREAM automatically determines the sizesize of the jump.
● DREAM automatically determines the directiondirection of the jump
● DREAM is well suited for multi-modalmulti-modal post. dist. 
● DREAM is well suited for high dimensionalhigh dimensional sampling
● DREAM is symmetricsymmetric : only a Metropolis ratio

Nevertheless only applicable to continuous parameters Nevertheless only applicable to continuous parameters   

Extension for discrete parameter : Discrete-DREAM Extension for discrete parameter : Discrete-DREAM 
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DREAM : Example

Adaptive RWAdaptive RW DREAMDREAM
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DREAM algorithm
M parallel MCMC chains : 

...

Proposal distribution :Proposal distribution : 

Symmetric proposal dist :Symmetric proposal dist :
● Accept/reject the draw according to the probabilityAccept/reject the draw according to the probability 
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D-DREAM algorithm
M parallel MCMC chains : 

ContinuousContinuous  
Discrete Discrete   

Proposal distribution :Proposal distribution : 

Proposal distribution :Proposal distribution : 

Accept with probabilityAccept with probability 

Accept with probabilityAccept with probability 



23

Example

Initial state :Initial state :

Convergence after 100.000 Convergence after 100.000 
MCMC iterations !MCMC iterations !  

Initial states  aroundInitial states  around

Convergence after 3.000 Convergence after 3.000 
MCMC iterations !MCMC iterations !  

D-DREAMD-DREAM Single-moveSingle-move
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D-DREAM (2014)

● Generic method for CP models
● Inference on multiple breaks by marginal likelihood
● Very fast compared to existing algorithms

● Model selection based on many estimations
● Only applicable to CP models and specific class of recurrent 

states

AdvantagesAdvantages

DrawbacksDrawbacks
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CP and MS models
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Particle MCMC
CP- and MS-GARCH modelsCP- and MS-GARCH models

Change-pointChange-point Markov-switchingMarkov-switching
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Particle MCMC
Sets of parameters : 

ContinuousContinuous  State var. State var.   

MCMC scheme :  
1)1)

2)2)

3)3)

Sampling a full state vector is unfeasible Sampling a full state vector is unfeasible 
due to the path dependence issuedue to the path dependence issue
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Particle MCMC
3)3)

Idea :Idea : Approximate the distribution with a SMC algorithm Approximate the distribution with a SMC algorithm

Does not keep invariant the posterior distributionDoes not keep invariant the posterior distribution

Andrieu, Doucet and Holenstein (2010)

● Show how to incorporate the SMC into an MCMC
● Allow for Metropolis and Gibbs algorithms
● Introduce the concept of conditional SMC

Does not keep invariant the posterior distributionDoes not keep invariant the posterior distribution

With a conditional SMC, the MCMC exhibits the With a conditional SMC, the MCMC exhibits the 
posterior distribution as invariant one.posterior distribution as invariant one.
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Particle MCMC
3)3)

Previous valuePrevious value

SMC :

1) Initialisation of the particles and weights:1) Initialisation of the particles and weights:

IterationsIterations ● Re-sample the particles

● Generate new states

● Compute new weights
and
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SMC
Init. Re sampling New states Weights

... until T
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Particle Gibbs
● Conditional SMC :Conditional SMC : SMC where the previous MCMC state vector 

is ensured to survive during the entire SMC sequence.

3)3)
● Launch a conditional SMC
● Sample a state vector as follows :

1)1)

2)2)
● Improvements :

1) Incorporation of the APF in the conditional SMC
2) Backward sampling as Godsill, Doucet and West (2004) 
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Example

Initial state :Initial state :Initial states  aroundInitial states  around

D-DREAMD-DREAM PMCMCPMCMC
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PMCMC
S&P 500 daily percentage returns S&P 500 daily percentage returns 

from May 20,1999 to April 25, 2011from May 20,1999 to April 25, 2011
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PMCMC
Various financial time seriesVarious financial time series
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PMCMC (2013)

● Generic method for CP and MS models
● Inference on multiple breaks by marginal likelihood
● Very good mixing properties

● Model selection based on many estimations
● Very computationally demanding
● Difficult to calibrate the number of particles
● Difficult to implement

AdvantagesAdvantages

DrawbacksDrawbacks
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IHMM-GARCH
CP- and MS-GARCH modelsCP- and MS-GARCH models

Change-pointChange-point Markov-switchingMarkov-switching
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IHMM-GARCH
Sets of parameters : 

ContinuousContinuous  State var. State var.   

MCMC scheme :  
1)1)

2)2)

3)3)
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IHMM-GARCH
3)3)

Sampling a full state vector is infeasible Sampling a full state vector is infeasible 
due to the path dependence issuedue to the path dependence issue

Sampling a full state vector from an approximate modelSampling a full state vector from an approximate model

Accept/reject according to the Metropolis-hastings ratioAccept/reject according to the Metropolis-hastings ratio

Klaassen or Haas, Mittnik and PaolelaKlaassen or Haas, Mittnik and Paolela
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IHMM-GARCH

Moreover, Hierarchical dirichlet processesHierarchical dirichlet processes are used
 

● To infer the number of regime in one estimation
● To include both CP and MS specification in one model



40

IHMM-GARCH
S&P 500 daily percentage returns S&P 500 daily percentage returns 

from May 20,1999 to April 25, 2011from May 20,1999 to April 25, 2011

PMCMCPMCMC IHMM-GARCHIHMM-GARCH
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IHMM-GARCH (2014)

● Generic method for CP and MS models
● Self-determination of the number of breaks
● Self-determination of the specification (CP and/or MS)
● Predictions of breaks
● Very good mixing properties
● Fast MCMC estimation

● Difficult to implement

AdvantagesAdvantages

DrawbacksDrawbacks
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References
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