Chapter 3

Structural breaks for models with path dependence

Chapter 3

- Path dependence (p. 3)
- Change-point models (p. 16)
- Markov-switching and Change-point models (p. 26)
 - PMCMC algorithm
 - IHMM-GARCH
- References (p. 43)

Path dependence

Chib's specification

Advantages

- Multiple breaks
- Recurrent or no recurrent states (Change-point/Markovswitching)
- MCMC with good mixing properties
- Allow to select an optimal number of regimes
- Forecast of structural breaks

State of the art !

Drawbacks

- Geometric distribution for the regime duration
- Many computation for selecting the number of regimes
- Not applicable to models with path dependence

Chib's specification

Why not applicable ?

• Simplification in the Forward-backward algorithm :

$$f(y_t|Y_{1:t-1}, S_{1:t}) = f(y_t|Y_{1:t-1}, s_t)$$

- If assumption does not hold :
- $\pi(s_t|Y_{1:T}, S_{t+1:T}) \propto f(s_t|Y_{1:t})f(S_{t+1:T}, Y_{t+1:T}|Y_{1:t}, s_t)$ $\propto f(s_t|Y_{1:t})f(S_{t+1:T}|Y_{1:t}, s_t)f(Y_{t+1:T}|Y_{1:t}, S_{t:T})$ $\neq f(s_t|Y_{1:t})f(s_{t+1}|s_t)$

Chib's algorithm not available for

State-space model with structural breaks in parameters Example : ARMA, GARCH

Path dependent models

CP- and MS-ARMA models

$$y_t = \mu_{s_t} + \theta_{s_t} y_{t-1} + \phi_{s_t} \epsilon_{t-1} + \epsilon_t$$
$$s_t | s_{t-1}, P \sim p_{s_{t-1}, s_t}$$

CP- and MS-GARCH models

$$y_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \omega_{s_t} + \alpha_{s_t} y_{t-1}^2 + \beta_{s_t} \sigma_{t-1}^2$$

$$s_t | s_{t-1}, P \sim p_{s_{t-1}, s_t}$$

Change-point

Markov-switching

$$P = \begin{pmatrix} p_{1,1} & 1 - p_{1,1} & 0 & \dots & 0 \\ 0 & p_{2,2} & 1 - p_{2,2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \qquad P = \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} & \dots & p_{1,K+1} \\ p_{2,1} & p_{2,2} & p_{2,3} & \dots & p_{2,K+1} \\ \dots & \dots & \dots & \dots & \dots \\ p_{K+1,1} & p_{K+1,2} & p_{K+1,3} & \dots & p_{K+1,K+1} \end{pmatrix}$$

Path dependence problem

Path dependence problem

Solutions?

1) Use of approximate models without path dependence

- Gray (1996), Dueker (1997), Klaassen (2002)
- Haas, Mittnik, Poella (2004)

$$y_{t} = \sigma_{t,s_{t}} \epsilon_{t}$$

$$\sigma_{t,1}^{2} = \omega_{1} + \alpha_{1} y_{t-1}^{2} + \beta_{1} \sigma_{t-1,1}^{2}$$

$$\sigma_{t,2}^{2} = \omega_{2} + \alpha_{2} y_{t-1}^{2} + \beta_{2} \sigma_{t-1,2}^{2}$$

 $\sigma_{t,K+1}^2 = \omega_{K+1} + \alpha_{K+1} y_{t-1}^2 + \beta_{K+1} \sigma_{t-1,K+1}^2$

Path dependence problem

Solutions?

2) Stephens (1994) : Inference on multiple breaks Drawbacks

- Time-consuming if T large
- Many MCMC iterations are required

May not converge in a finite amount of time !

- 3) Bauwens, Preminger, Rombouts (2011):
 - Single-move MCMC

Single-move MCMC

CP- and MS-GARCH models

$$y_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \omega_{s_t} + \alpha_{s_t} y_{t-1}^2 + \beta_{s_t} \sigma_{t-1}^2$$

$$s_t | s_{t-1}, P \sim p_{s_{t-1}, s_t}$$

Change-point

Markov-switching

$$P = \begin{pmatrix} p_{1,1} & 1 - p_{1,1} & 0 & \dots & 0 \\ 0 & p_{2,2} & 1 - p_{2,2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \qquad P = \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} & \dots & p_{1,K+1} \\ p_{2,1} & p_{2,2} & p_{2,3} & \dots & p_{2,K+1} \\ \dots & \dots & \dots & \dots & \dots \\ p_{K+1,1} & p_{K+1,2} & p_{K+1,3} & \dots & p_{K+1,K+1} \end{pmatrix}$$

Single-move MCMC

Metropolis-Hastings sampler : $\Theta = \{\omega_1, \alpha_1, \beta_1, ..., \omega_{K+1}, \alpha_{K+1}, \beta_{K+1}\}$

 $\theta_i | Y_{1:T}, S_{1:T}, P, \Theta_{-i} \sim \text{Griddy-Gibbs}$

 $s_t | Y_{1:T}, P, \Theta, S_{1:t-1}, S_{t+1:T} \sim \text{single-move}$

- $P|Y_{1:T}, S_{1:T}, \Theta \sim \text{Dirichlet}(\eta + n_{i,1:K+1})$

One state updated at a time!

 $\pi(s_t | Y_{1:T}, P, \Theta, S_{-t}) \propto f(Y_{1:T} | \Theta, S_{1:T}) f(s_t | s_{t-1}, P) f(s_{t+1} | s_t, P)$ $\propto \underbrace{f(Y_{1:T}|\Theta, S_{1:T})}_{P_{s_{t-1},s_t}p_{s_t,s_{t+1}}}$ Likelihood Transition matrix

Example

Convergence after 100.000 MCMC iterations!

Single-move

Advantages

- Generic method :
 - Works for many CP and MS models

Drawbacks

- No criterion for selecting the number of regimes
- Very Time-consuming if T large (especially for MS)
- Many MCMC iterations are required :

 Very difficult to assess convergence

 May not converge in a finite amount of time !

Questions?

Change-point models

CP-GARCH models :

$$y_t = \mu_k + \epsilon_t,$$

$$\epsilon_t = \sigma_t \eta_t, \text{ with } \eta_t \sim i.i.d. N(0, 1),$$

$$\sigma_t^2 = \omega_k + \alpha_k \epsilon_{t-1}^2 + \beta_k \sigma_{t-1}^2,$$

if $t \in [\tau_{k-1}, \tau_k]$, with $k = \{1, 2, ..., K+1\}$ denoting the regime.

Come back to the Stephens' specification !

Problem with Stephens' inference :

• Break dates sample one at a time (single-move)

→ MCMC mixing issue

• Very demanding if T is large

Discrete-DREAM MCMC :

- Metropolis algorithm
 - Jointly sample the break dates
 - Very fast (faster than Forward-Backward)

• Two sets of parameters to be estimated :

DiffeRential Adaptative Evolution Metropolis (Vrugt et al. 2009)

- DREAM automatically determines the size of the jump.
- DREAM automatically determines the direction of the jump
- DREAM is well suited for **multi-modal** post. dist.
- DREAM is well suited for high dimensional sampling
- DREAM is symmetric : only a Metropolis ratio

Nevertheless only applicable to continuous parameters

Extension for discrete parameter : Discrete-DREAM

DREAM : Example

Adaptive RW

M parallel MCMC chains :

Symmetric proposal dist :

Accept/reject the draw according to the probability

$$\min[\frac{f(Y_{1:T}|\tilde{\Theta}_{j}^{i},\Gamma_{j}^{i})f(\tilde{\Theta}_{j}^{i})}{f(Y_{1:T}|\Theta_{j}^{i},\Gamma_{j}^{i})f(\Theta_{j}^{i})},1]$$

M parallel MCMC chains : $\{\Theta_j^i, \Gamma_j^i\}_{i=1,j=1}^{N,M}$

Continuous

 $\Theta = (\theta_1, \theta_2, \dots, \theta_{K+1})'$

 $\theta_k = (\mu_k, \omega_k, \alpha_k, \beta_k)$

Proposal distribution :

$$\tilde{\Theta}_j^i = \Theta_j^i + \gamma(\delta, d) \left(\sum_{g=1}^{\delta} \Theta_{r_1(g)}^i - \sum_{h=1}^{\delta} \Theta_{r_2(h)}^i\right) + \zeta$$

 $\tilde{\Gamma}_{j}^{i} = \Gamma_{j}^{i} + \operatorname{round}[\gamma(\delta, d)(\sum_{g=1}^{\delta} \Gamma_{r_{1}(g)}^{i} - \sum_{h=1}^{\delta} \Gamma_{r_{2}(h)}^{i}) + \zeta]$

Proposal distribution :

Discrete

 $\Gamma = (\tau_1, \tau_2, \dots, \tau_K)'$

Accept with probability

$$\min[\frac{f(Y_{1:T}|\tilde{\Theta}_j^i,\Gamma_j^i)f(\tilde{\Theta}_j^i)}{f(Y_{1:T}|\Theta_j^i,\Gamma_j^i)f(\Theta_j^i)},1]$$

$$\min[\frac{f(Y_{1:T}|\Theta_j^i, \tilde{\Gamma}_j^i)f(\tilde{\Gamma}_j^i)}{f(Y_{1:T}|\Theta_j^i, \Gamma_j^i)f(\Gamma_j^i)}, 1]$$

D-DREAM (2014)

Advantages

- Generic method for CP models
- Inference on multiple breaks by marginal likelihood
- Very fast compared to existing algorithms

Drawbacks

- Model selection based on many estimations
- Only applicable to CP models and specific class of recurrent states

CP and MS models

CP- and MS-GARCH models

$$y_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \omega_{s_t} + \alpha_{s_t} y_{t-1}^2 + \beta_{s_t} \sigma_{t-1}^2$$

$$\epsilon_t \sim \text{ i.i.d.} N(0, 1)$$

$$s_t | s_{t-1}, P \sim p_{s_{t-1}, s_t}$$

Change-point

Markov-switching

$$P = \begin{pmatrix} p_{1,1} & 1 - p_{1,1} & 0 & \dots & 0 \\ 0 & p_{2,2} & 1 - p_{2,2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \qquad P = \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} & \dots & p_{1,K+1} \\ p_{2,1} & p_{2,2} & p_{2,3} & \dots & p_{2,K+1} \\ \dots & \dots & \dots & \dots & \dots \\ p_{K+1,1} & p_{K+1,2} & p_{K+1,3} & \dots & p_{K+1,K+1} \end{pmatrix}$$

Sets of parameters :
Continuous
$$\begin{cases} \Theta = (\theta_1, \theta_2, ..., \theta_{K+1})' \\ \theta_k = (\omega_k, \alpha_k, \beta_k) \\ P \end{cases}$$
State var. $S_{1:T} = \{s_1, ..., s_T\}$

MCMC scheme :

1) $\Theta|Y_{1:T}, P, S_{1:T} \sim \text{Metropolis-Hastings}$ 2) $P|Y_{1:T}, \Theta, S_{1:T} \sim \prod_{i=1}^{K+1} \text{Dir}(\eta_1 + n_{i,1}, ..., \eta_1 + n_{i,K+1})$ 3) $S_{1:T}|Y_{1:T}, P, \Theta \sim \text{Particle-Gibbs}$

Sampling a full state vector is unfeasible due to the path dependence issue

- **3)** $S_{1:T}|Y_{1:T}, P, \Theta \sim \text{Particle-Gibbs}$
 - Idea : Approximate the distribution with a SMC algorithm
 - Does not keep invariant the posterior distribution

Andrieu, Doucet and Holenstein (2010)

- Show how to incorporate the SMC into an MCMC
- Allow for Metropolis and Gibbs algorithms
- Introduce the concept of conditional SMC
 - With a conditional SMC, the MCMC exhibits the posterior distribution as invariant one.

3) $S_{1:T}|Y_{1:T}, P, \Theta \sim \text{Particle-Gibbs}$

 $f(S_{1:t}|Y_{1:t}) \propto f(y_t|Y_{1:t-1}, S_{1:t})f(s_t|S_{1:t-1})f(S_{1:t-1}|Y_{1:t-1})$

SMC : 1) Initialisation of the particles and weights: $\begin{cases} \{s_1^r\}_{r=1}^R \\ w_r \propto f(y_1|s_1^r) \end{cases}$

Iterations $\forall t \in [2, T]$

- Re-sample the particles $\forall r \in [1, R]; A_t^r \sim \operatorname{Mult}(W_{t-1})$
- Generate new states $\forall r \in [1, R]; s_t^r \sim \text{Mult}(p_{s_{t-1}^{A_t^r}, s_t})$
- Compute new weights $\forall r \in [1, R]; w_t^r \propto f(y_t | S_{1:t-1}^{A_{1:t-1}^r}, s_t^r) \text{ and } W_t^r = w_t^r / (\sum_{i=1}^R w_t^i)$

Previous value

Particle Gibbs

• Conditional SMC : SMC where the previous MCMC state vector is ensured to survive during the entire SMC sequence.

3) $S_{1:T}|Y_{1:T}, P, \Theta \sim \text{Particle-Gibbs}$

- Launch a conditional SMC
- Sample a state vector as follows :

1) $r \sim \operatorname{Mult}(W_T^1, ..., W_T^R)$ and set $s_T = s_T^r$

2)From T-1 until 1, retrieve the path of the state : $s_t = s_t^{A_{t+1}^r}$

• Improvements :

1) Incorporation of the APF in the conditional SMC

2) Backward sampling as Godsill, Doucet and West (2004)

Example

T = 3000

D-DREAM

Initial states around [200 600] $Corr(\tau_1^i, \tau_1^{i-200}) = -0.005$ $Corr(\tau_1^i, \tau_1^{i-10}) = 0.54$

3000 Break date 1 Break date 2 2500 2000 1500 500^L 100 200 300 400 500 600 700 800 900 1000

Initial state: [200 600] $Corr(\tau_1^i, \tau_1^{i-200}) = 0.05$ $Corr(\tau_1^i, \tau_1^{i-10}) = 0.21$

PMCMC

PMCMC

S&P 500 daily percentage returns from May 20,1999 to April 25, 2011

GARCH **CP-GARCH MS-GARCH** σ^2 σ^2 σ^2 Regime β В В α α α 1.55 0.075 0.915 1.95 0.0849 0.868 2.32 0.089 0.891 2 0.023 0.931 0.46 0.031 0.901 0.45 0.098 3 0.890 2.75

PMCMC

Various financial time series

Series	Spline-GARCH		GARCH	CP-GARCH		MS-GARCH		
	knots	log-BF	MLL	K+1	log-BF	K+1	log-BF	nswitch
S&P 500	3	5.21	-4505.33	3	2.28	2	7.34	3
DJIA	3	2.99	-4333.43	1	0	2	4.7	3
NASDAQ	3	3.20	-5429.84	1	0	2	1.94	7
NYSE	3	2.40	-4380.62	1	0	2	3.91	13
BAC	4	16.62	-6127.39	3	50.12	3	79.49	11
BA	4	9.10	-6174.57	2	8.9	2	11.48	6
JPM	3	8.82	-6400.27	3	5.17	3	7.22	9
MRK	5	48.78	-6209.73	5	215.39	3	335.23	56
PG	4	16.34	-4842.02	3	24.23	2	33.6	9
Metals	2	6.66	-5267.44	2	11.33	2	14.68	5
Yen/Dollar	1	-3.34	-2982.33	1	0	2	3.05	7

PMCMC (2013)

Advantages

- Generic method for CP and MS models
- Inference on multiple breaks by marginal likelihood
- Very good mixing properties

Drawbacks

- Model selection based on many estimations
- Very computationally demanding
- Difficult to calibrate the number of particles
- Difficult to implement

CP- and MS-GARCH models

$$y_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \omega_{s_t} + \alpha_{s_t} y_{t-1}^2 + \beta_{s_t} \sigma_{t-1}^2$$

$$\epsilon_t \sim \text{ i.i.d.} N(0, 1)$$

$$s_t | s_{t-1}, P \sim p_{s_{t-1}, s_t}$$

Change-point

Markov-switching

$$P = \begin{pmatrix} p_{1,1} & 1 - p_{1,1} & 0 & \dots & 0 \\ 0 & p_{2,2} & 1 - p_{2,2} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \qquad P = \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} & \dots & p_{1,K+1} \\ p_{2,1} & p_{2,2} & p_{2,3} & \dots & p_{2,K+1} \\ \dots & \dots & \dots & \dots & \dots \\ p_{K+1,1} & p_{K+1,2} & p_{K+1,3} & \dots & p_{K+1,K+1} \end{pmatrix}$$

Sets of parameters :
Continuous
$$\begin{cases} \Theta = (\theta_1, \theta_2, ..., \theta_{K+1})' \\ \theta_k = (\omega_k, \alpha_k, \beta_k) \\ P \end{cases}$$
State var. $S_{1:T} = \{s_1, ..., s_T\}$

MCMC scheme :

1) $\Theta|Y_{1:T}, P, S_{1:T} \sim \text{Metropolis-Hastings}$ 2) $P|Y_{1:T}, \Theta, S_{1:T} \sim \prod_{i=1}^{K+1} \text{Dir}(\eta_1 + n_{i,1}, ..., \eta_1 + n_{i,K+1})$ 3) $S_{1:T}|Y_{1:T}, P, \Theta \sim \text{M-H based on approximate models}$

3) $S_{1:T}|Y_{1:T}, P, \Theta \sim M$ -H based on approximate models

Sampling a full state vector is infeasible due to the path dependence issue

Sampling a full state vector from an approximate model *Klaassen or Haas, Mittnik and Paolela*

Accept/reject according to the Metropolis-hastings ratio

Moreover, Hierarchical dirichlet processes are used

- To infer the number of regime in one estimation
- To include both CP and MS specification in one model

$$P = \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} & \dots & \dots \\ p_{2,1} & p_{2,2} & p_{2,3} & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ p_{K+1,1} & p_{K+1,2} & p_{K+1,3} & \dots & \dots \end{pmatrix}$$

S&P 500 daily percentage returns from May 20,1999 to April 25, 2011

Regime 1Regime 2Regime 3Regime 4Regime 5Regime 6Regime 7Prob.00.60460.20750.14550.02240.01960.0004Table: Posterior probabilities of the number of regimes for the S&P500 daily index

IHMM-GARCH (2014)

Advantages

- Generic method for CP and MS models
- Self-determination of the number of breaks
- Self-determination of the specification (CP and/or MS)
- Predictions of breaks
- Very good mixing properties
- Fast MCMC estimation

Drawbacks

• Difficult to implement

References

References

• Bauwens, Preminger, Rombouts (2010)

Bauwens, L.; Preminger, A. & Rombouts, J. '*Theory and Inference for a Markov-switching GARCH Model*', Econometrics Journal, 2010, 13, 218-244

• Bauwens, Dufays, De Backer (2011)

Bauwens, L.; Dufays, A. & De Backer, B. 'Estimating and forecasting structural breaks in financial time series', CORE discussion paper, 2011/55, 2011

• Bauwens, Dufays, Rombouts (2013)

Bauwens, L.; Dufays, A. & Rombouts, J. 'Marginal Likelihood for Markov Switching and Change-point GARCH Models', Journal of Econometrics, 2013, 178 (3), 508-522

References

• Dufays (2012)

• Dufays, A. 'Infinite-State Markov-switching for Dynamic Volatility and Correlation Models', CORE discussion paper, 2012/43, 2012

SMC algorithm :

• He, Maheu (2010)

He, Z. & Maheu, J. M. '*Real time detection of structural breaks in GARCH models'*, Computational Statistics & Data Analysis, 2010, 54, 2628-2640

Without path dependence

• Gray (1996)

Gray, S. 'Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process', Journal of Financial Economics, 1996, 42, 27-62

• Dueker (1997)

Dueker, M. 'Markov Switching in GARCH Processes in Mean Reverting Stock Market Volatility', Journal of Business and Economics Statistics, 1997, 15, 26-34

• Klaassen (2002)

Klaassen, F. 'Improving GARCH volatility forecasts with regime-switching GARCH', Empirical Economics, 2002, 27, 363-394

• Haas, Mittnik and Paolella (2004)

Haas, M.; Mittnik, S. & Paolella, M. 'A New Approach to Markov-Switching GARCH Models', Journal of Financial Econometrics, 2004, 2, 493-530